一,项目名称
基于树莓派5的简易汽车仪表盘
二,项目概述
本项目主要应用于车载娱乐方面,因此,本项目致力于设计一款创新的车载中控面板,集成了多种先进技术,包括OBD(车载诊断系统)、卫星定位、陀螺仪和后视影像系统。这款中控面板不仅能够实时监测车辆的运行状态和故障信息,还能提供精准的定位服务,确保驾驶者在行驶过程。
三,硬件部分
主控:
- 树莓派5

- 先楫HPM5361

传感器:
-**GPS模块-ATGM332D-5N-11-0 **
-oled
-蜂鸣器
-sht30温湿度传感器
实物图如下:

详细原理图如下:
-电源部分
采用矽力杰的SY8089A1AAC高效1.5MHz 2A同步降压调节器。

充电部分
采用wsp4056,输出电压 4.2V 输入电压 4.0-8.0V 最大充电电流 1000ma

蜂鸣器部分

mpu6050


CAN


温湿度计

四,系统框架
五,软件部分
OBD协议解析
void CAN_RxBytes(void)
{
unsigned char data[8];
uint16_t pid = 0;
uint8_t data1 = 0;
uint8_t data2 = 0;
int16_t value;
bool status;
/*-------------------------------------mxz add------------------------------------*/
send_pid(PID,7);
status=CAN_ReceiveBytes(CAN,8,data,8); // frameSize from 1 to 8
pid = data[2];
data1 = data[3];
data2 = data[4];
if (status)
{
switch (pid)
{
case PID_RPM://转速
value = (data2 | data1 << 8) / 4;
g_odb_message.rpm = value * g_parm_config.RPM_config / 100;
// LTPrintf("PID_RPM %d n",value);
break;
case PID_SPEED://车速
value = data1 ;
// LTPrintf("PID_SPEED :%dn",value);
if(g_parm_config.Speed_Src == 0)//速度来自GPS
{
g_odb_message.speed = gpsx.SOGK * g_parm_config.speed_config / 100;
}else
{
g_odb_message.speed = value * g_parm_config.speed_config / 100;
}
break;
case PID_DISTANCE: // km//表示总行驶里程
value = (data2 | data1 << 8) ;
g_odb_message.Distance = value;
// LTPrintf("PID_DISTANCE :%dn",value);
break;
case PID_CONTROL_MODULE_VOLTAGE: // 表示控制模块的电压,通常用于监控电源状态。 v
value = (data2 | data1 << 8) / 1000;
g_odb_message.Control_Module_Voltage = value;
// LTPrintf("PID_CONTROL_MODULE_VOLTAGE :%dn",value);
break;
case PID_ENGINE_FUEL_RATE: // L/h //表示单位时间内的燃油消耗量(通常以升每小时或加仑每小时为单位)。
value = (data2 | data1 << 8) / 20;
g_odb_message.engine_fuel_rate = value;
// LTPrintf("PID_ENGINE_FUEL_RATE :%dn",value);
break;
case PID_EVAP_SYS_VAPOR_PRESSURE: // kPa 表示蒸发系统内的气压,通常用于监测油箱的密封性。
value = (data2 | data1 << 8) / 4;
g_odb_message.map = value * g_parm_config.MAP_config / 100;
// LTPrintf("PID_EVAP_SYS_VAPOR_PRESSURE :%dn",value);
break;
case PID_COOLANT_TEMP: // 水温
value = data1 - 40;
g_odb_message.coolant_temp = value;
// LTPrintf("PID_COOLANT_TEMP :%dn",value);
break;
#if 0
case PID_FUEL_PRESSURE: // kPa
value = data1 * 3;
break;
case PID_COOLANT_TEMP:
case PID_INTAKE_TEMP:
case PID_AMBIENT_TEMP:
case PID_ENGINE_OIL_TEMP:
value = data1 - 40;
break;
case PID_THROTTLE:
case PID_COMMANDED_EGR:
case PID_COMMANDED_EVAPORATIVE_PURGE:
case PID_FUEL_LEVEL:
case PID_RELATIVE_THROTTLE_POS:
case PID_ABSOLUTE_THROTTLE_POS_B:
case PID_ABSOLUTE_THROTTLE_POS_C:
case PID_ACC_PEDAL_POS_D:
case PID_ACC_PEDAL_POS_E:
case PID_ACC_PEDAL_POS_F:
case PID_COMMANDED_THROTTLE_ACTUATOR:
case PID_ENGINE_LOAD:
case PID_ABSOLUTE_ENGINE_LOAD:
case PID_ETHANOL_FUEL:
case PID_HYBRID_BATTERY_PERCENTAGE:
value = data1 * 100 / 255;
break;
case PID_MAF_FLOW: // grams/sec
value = (data2 | data1 << 8) / 100;
break;
case PID_TIMING_ADVANCE:
value = (data1 / 2) - 64;
break;
case PID_DISTANCE_WITH_MIL: // km
case PID_TIME_WITH_MIL: // minute
case PID_TIME_SINCE_CODES_CLEARED: // minute
case PID_RUNTIME: // second
case PID_FUEL_RAIL_PRESSURE: // kPa
case PID_ENGINE_REF_TORQUE: // Nm
value = (data2 | data1 << 8);
break;
case PID_CONTROL_MODULE_VOLTAGE: // V
value = (data2 | data1 << 8) / 1000;
break;
case PID_ENGINE_FUEL_RATE: // L/h
value = (data2 | data1 << 8) / 20;
break;
case PID_ENGINE_TORQUE_DEMANDED: // %
case PID_ENGINE_TORQUE_PERCENTAGE: // %
value = data1 - 125;
break;
case PID_SHORT_TERM_FUEL_TRIM_1:
case PID_LONG_TERM_FUEL_TRIM_1:
case PID_SHORT_TERM_FUEL_TRIM_2:
case PID_LONG_TERM_FUEL_TRIM_2:
case PID_EGR_ERROR:
value = (data1 * 100 / 128) - 100;
break;
case PID_FUEL_INJECTION_TIMING:
value = ((data2 | data1 << 8) / 128) - 210;
break;
case PID_CATALYST_TEMP_B1S1:
case PID_CATALYST_TEMP_B2S1:
case PID_CATALYST_TEMP_B1S2:
case PID_CATALYST_TEMP_B2S2:
value = ((data2 | data1 << 8) / 10) - 40;
break;
case PID_AIR_FUEL_EQUIV_RATIO: // 0~200
value = (data2 | data1 << 8) * 2 / 65536;
break;
#endif
default:
break;
}
}
}
GNSS数据解析
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-03-02 Administrator the first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
/*******************************************************************************************/
#include "gps.h"
#include <string.h>
nmea_msg gpsx;
/**
* @brief NMEA_Comma_pos 从buf里面得到第n个逗号所在的位置
* @argument 数组
* @argument 地n个','
* @return 逗号的位置
*/
#if 1
u8 NMEA_Comma_Pos(u8 *buf,u8 n)
{
u8 *ptr = buf;
while(n)
{
//遇到'*'或者非法字符,则不存在第cx个逗号
if(*ptr == '*' || *ptr < ' '|| *ptr > 'z')return 0xFF;
if(*ptr == ',')n--;
ptr++;
}
return ptr-buf;
}
/**
* @brief NMEA_Pow m^n次方
*/
u32 NMEA_Pow(u8 m,u8 n)
{
u32 result =1;
while(n--)result *= m;
return result;
}
/**
* @brief 字符串转数字
*/
int NMEA_Str2Num(u8 *buf,u8*dx)
{
u8 *p = buf;
u32 ires=0,fres=0;
u8 ilen = 0,flen =0,i;
u8 mask=0;
int res;
/*********得到个位十位***************/
while(1)
{
if(*p == '-')
{
mask |= 0x02;
p++;
}
if(*p == ',' || *p == '*')break;
if(*p == '.')
{
mask |= 0x01;
p++;
}
else if((*p >'9') || (*p < '0'))
{
ilen=0;
flen=0;
break;
}
if(mask & 0x01)flen++;//小数
else ilen++;//整数
p++;
}
if(mask&0x02)buf++;
for(i = 0;i<ilen;i++)
{
ires += NMEA_Pow(10,ilen-1-i)*(buf[i]-'0');
//LTPrintf("buf[%d]:%d ,ires:%dn",i,(buf[i]-'0'),ires);
}
if(flen>5)flen = 5;
*dx = flen;
for(i=0;i<flen;i++)
{
fres += NMEA_Pow(10,flen-1-i)*(buf[ilen+1+i]-'0');
}
//LTPrintf("ilen:%d flen%d ires:%d fres:%dn",ilen,flen,ires,fres);
res = ires*NMEA_Pow(10,flen)+fres;
if(mask&0x02)res = -res;
return res;
}
/**
* @brief 分析GPGSV信息信息
* @argument nmea信息结构体
* @argument buf接收数据的缓存区地址
* @return 无?
* @note GSV表示可视的GNSS卫星。本语句包含可视的卫星数、卫星标识号、仰角、方位角和信噪比。每次传送,
* 一个GSV语句只能包含最多4颗卫星的数据,
* 因此可能需要多个语句才能获得完整的信息。由于GSV包含的卫星不用于定位解决方案,所以GSV语句指示的卫星可能比GGA多。
* @note “GN”标识符不可用于该语句。如果可以多个卫星系统可视,则设备输出多条GSV语句,用不同的发送设备标识符表示相应的卫星。
**/
void NMEA_GPGSV_Analysis(nmea_msg *gpsx,u8 *buf)
{
u8 *p,*p1,dx;
u8 len,i,j,slx = 0;
u8 posx;
p = buf;
p1 = (u8*)strstr((const char*)p,"$GPGSV");
len = p1[7] - '0'; //得到GPGSV的条数语句总数。范围:1~9。
posx=NMEA_Comma_Pos(p1,3); //得到可见卫星总数
if(len!=0xFF)gpsx->svnum = NMEA_Str2Num(p1+posx,&dx);
for(i=0;i<len;i++)
{
p1 = (u8*)strstr((const char*)p,"$GPGSV");
for(j=0;j<4;j++)
{
posx=NMEA_Comma_Pos(p1,4+j*4);
if(posx!=0xFF)gpsx->slmsg[slx].num = NMEA_Str2Num(p1+posx,&dx);//得到卫星编号
else break;
posx=NMEA_Comma_Pos(p1,5+j*4);
if(posx!=0xFF)gpsx->slmsg[slx].eledeg= NMEA_Str2Num(p1+posx,&dx);//得到卫星仰角
else break;
posx=NMEA_Comma_Pos(p1,6+j*4);
if(posx!=0xFF)gpsx->slmsg[slx].azideg = NMEA_Str2Num(p1+posx,&dx);//得到卫星方位角
else break;
posx=NMEA_Comma_Pos(p1,7+j*4);
if(posx!=0xFF)gpsx->slmsg[slx].sn = NMEA_Str2Num(p1+posx,&dx);//得到卫星信噪比
else break;
slx++;
}
}
}
/**
* @brief 分析GPGGA信息
* @argument nmea信息结构体
* @argument buf接收数据的缓存区地址
* @return 无?
* @note GGA提供全球定位系统定位数据。本语句包含GNSS接收机提供的时间、位置和定位相关数据
* 1.QZSS和GPS星系配置下<TalkerID>均为GP;有关卫星标识符的详情,请参考表16:GNSS标识符。
* 2. NMEA 0183协议指示GGA消息为GPS系统特有;但当接收器配置为多星系时,GGA消息的内容将从多星系解决方案中生成。
* 3. 1) NMEA 0183协议定义的使用中卫星数量范围为00~12,然而,在多星系解决方案中,使用的卫星数量可能超过12颗。
**/
void NMEA_GPGGA_Analysis(nmea_msg *gpsx,u8 *buf)
{
u8 *p1,dx;
u8 posx;
p1 = (u8*)strstr((const char*)buf,"$GNGGA");
posx = NMEA_Comma_Pos(p1,1);//得到日期
if(posx != 0xFF)
{
int temp = NMEA_Str2Num(p1+posx,&dx);
gpsx->utc.sec = (temp / 1000) % 10;
gpsx->utc.min = (temp / 100000) %100;
gpsx->utc.hour = temp / 10000000;
}
posx = NMEA_Comma_Pos(p1,2);NMEA_Str2Num;
if(posx!=0xFF)
{
int temp = NMEA_Str2Num(p1+posx,&dx);
//LTPrintf("temp:%d dx:%dn",temp,dx);
gpsx->latitude = temp / NMEA_Pow(10,dx+2);//得到°
float rs = temp%NMEA_Pow(10,dx+2); //得到'
gpsx->latitude=gpsx->latitude*NMEA_Pow(10,5)+(rs*NMEA_Pow(10,5-dx))/60;//转换为°
}
posx = NMEA_Comma_Pos(p1,3);//南纬还是北纬
if(posx!=0xFF)gpsx->nshemi = *(p1+posx);
posx = NMEA_Comma_Pos(p1,4);//得到经度
if(posx!=0xFF)
{
int temp = NMEA_Str2Num(p1+posx,&dx);
gpsx->longitude = temp / NMEA_Pow(10,dx+2);
float rs = temp%NMEA_Pow(10,dx+2);
gpsx->longitude = gpsx->longitude*NMEA_Pow(10,5)+(rs*NMEA_Pow(10,5-dx))/60;
}
posx = NMEA_Comma_Pos(p1,5);//东经还是**
if(posx!=0xFF)gpsx->ewhemi = *(p1+posx);
posx = NMEA_Comma_Pos(p1,6); //GPS状态:0,未定位;1,非差分定位;2,差分定位;6,正在估算.
if(posx!=0XFF)gpsx->gpssta = NMEA_Str2Num(p1+posx,&dx);
posx = NMEA_Comma_Pos(p1,7); //使用的卫星数。
if(posx!=0xFF)gpsx->posslnum = NMEA_Str2Num(p1+posx,&dx);
posx = NMEA_Comma_Pos(p1,9); //得到海拔高度
if(posx != 0xFF)gpsx->altitude = NMEA_Str2Num(p1+posx,&dx);
}
/**
* @brief 分析GPGSA信息
* @argument nmea信息结构体
* @argument buf接收数据的缓存区地址
* @return 无?
* @note GSA表示GNSS精度因子(DOP)与有效卫星。本语句包含GNSS接收机工作模式,GGA或GNS
语句报告的导航解算中用到的卫星以及精度因子的值。
**/
void NMEA_GPGSA_Analysis(nmea_msg *gpsx,u8 *buf)
{
u8 *p1,dx;
u8 posx,i;
//LTPrintf("===============NMEA_GPGSA_Analysis=======================rn");
p1 = (u8*)strstr((const char*)buf,"$GNGSA");
//LTPrintf("p1:%p buf:%prn",p1,buf);
posx = NMEA_Comma_Pos(p1,2); //得到定位类型
//LTPrintf("posx:%drn",posx);
if(posx!=0xFF)gpsx->fixmode = NMEA_Str2Num(p1+posx,&dx);
for(i=0;i<12;i++)//得到定位卫星编号
{
posx = NMEA_Comma_Pos(p1,3+i);
if(posx!=0xFF)gpsx->possl[i] = NMEA_Str2Num(p1+posx,&dx);
else break;
}
posx = NMEA_Comma_Pos(p1,15);//位置精度因子
if(posx != 0xFF)gpsx->pdop = NMEA_Str2Num(p1+posx,&dx);
posx = NMEA_Comma_Pos(p1,16);//水平精度因子
if(posx != 0xFF)gpsx->hdop = NMEA_Str2Num(p1+posx,&dx);
posx = NMEA_Comma_Pos(p1,17);//垂直精度因子
if(posx != 0xFF)gpsx->vdop = NMEA_Str2Num(p1+posx,&dx);
}
/**
* @brief 分析GPRMC信息
* @argument nmea信息结构体
* @argument buf接收数据的缓存区地址
* @return 无?
* @note RMC表示推荐的最少专用GNSS数据。本语句包含GNSS接收机提供的时间、日期、位置、航迹向
和速度数据。
**/
void NMEA_GPRMC_Analysis(nmea_msg *gpsx,u8 *buf)
{
u8 *p1,dx,posx;
u32 temp;
float rs;
p1 = (u8 *)strstr((const char*)buf,"GNRMC");//"$GPRMC",经常有&和GPRMC分开的情况,故只判断GPRMC.
//LTPrintf("buf:%p p1:%pn",buf,p1);
//LTPrintf("buf:%s p1:%sn",buf,p1);
posx = NMEA_Comma_Pos(p1,1);//获取时间,不要ms
//LTPrintf("posx:%d ",posx);
if(posx!=0xFF)
{
temp = NMEA_Str2Num(p1+posx,&dx) / NMEA_Pow(10,dx);
//LTPrintf("temp:%d dx:%dn",temp,dx);
gpsx->utc.hour = temp/10000;
gpsx->utc.min = (temp /100) %100;
gpsx->utc.sec = temp % 100;
}
posx = NMEA_Comma_Pos(p1,3);NMEA_Str2Num;
if(posx!=0xFF)
{
temp = NMEA_Str2Num(p1+posx,&dx);
//LTPrintf("temp:%d dx:%dn",temp,dx);
gpsx->latitude = temp / NMEA_Pow(10,dx+2);//得到°
rs = temp%NMEA_Pow(10,dx+2); //得到'
gpsx->latitude=gpsx->latitude*NMEA_Pow(10,5)+(rs*NMEA_Pow(10,5-dx))/60;//转换为°
}
posx = NMEA_Comma_Pos(p1,4);//南纬还是北纬
if(posx!=0xFF)gpsx->nshemi = *(p1+posx);
posx = NMEA_Comma_Pos(p1,5);//得到经度
if(posx!=0xFF)
{
temp = NMEA_Str2Num(p1+posx,&dx);
gpsx->longitude = temp / NMEA_Pow(10,dx+2);
rs = temp%NMEA_Pow(10,dx+2);
gpsx->longitude = gpsx->longitude*NMEA_Pow(10,5)+(rs*NMEA_Pow(10,5-dx))/60;
}
posx = NMEA_Comma_Pos(p1,6);//东经还是**
if(posx!=0xFF)gpsx->ewhemi = *(p1+posx);
posx = NMEA_Comma_Pos(p1,9);//得到日期
if(posx != 0xFF)
{
temp = NMEA_Str2Num(p1+posx,&dx);
gpsx->utc.date = temp / 10000;
gpsx->utc.month = (temp / 100) %100;
gpsx->utc.year = 2000 + temp % 100;
}
}
/**
* @brief 分析GPVTG信息
* @argument nmea信息结构体
* @argument buf接收数据的缓存区地址
* @return 无?
* @note VTG语句包含相对于地面的实际航向和速度
**/
void NMEA_GPVTG_Analysis(nmea_msg *gpsx,u8 *buf)
{
u8 *p1,dx,posx;
p1 = (u8*)strstr((const char*)buf,"$GNVTG");
posx = NMEA_Comma_Pos(p1,1);//<COGT 对地航向(真北)
if(posx!=0xFF)gpsx->cogt = NMEA_Str2Num(p1+posx,&dx) / NMEA_Pow(10,dx);
posx = NMEA_Comma_Pos(p1,5);//对地速度 节
if(posx!=0xFF)
{
gpsx->SOGN = NMEA_Str2Num(p1+posx,&dx) / NMEA_Pow(10,dx);
}
posx = NMEA_Comma_Pos(p1,7);//对地速度 km/h
gpsx->SOGK = NMEA_Str2Num(p1+posx,&dx) / NMEA_Pow(10,dx);
}
/**
* @brief 提取NMEA-0183信息
* @argument nmea信息结构体
* @argument buf接收数据的缓存区地址
* @return 无?
* @note
**/
void GPS_Analysis(nmea_msg *gpsx,u8 *buf)
{
NMEA_GPGSV_Analysis(gpsx,buf); //GPGSV解析
NMEA_GPGGA_Analysis(gpsx,buf); //GPGGA解析
NMEA_GPGSA_Analysis(gpsx,buf); //GPGSA解析
NMEA_GPRMC_Analysis(gpsx,buf); //GPRMC解析
NMEA_GPVTG_Analysis(gpsx,buf); //GPVTG解析
}
/**
* @brief GPS校验和计算
* @argument
* @argument
* @return 无?
* @note
**/
void GPS_CheckSum(u8*buf,u8*checksum)
{
*checksum = 0;
u8 *ptr = buf;
const char *start = strchr(ptr,'$');
const char *end = strchr(ptr,'*');
if(start == NULL || end == NULL || (start >= end))return;
for(ptr = (u8 *)(start + 1);ptr < (u8 *)end;ptr++)
{
*checksum ^= *ptr;
}
}
/*-----------------------------------------PCAS_---------------------------*/
/**
* @brief 配置NMEA串口波特率
* @argument
* @argument
* @return 无?
* @note
**/
//void PCAS01(u8 *buf,u8 baud)
//{
// u8 *ptr = "$PCAS01,1*";
// u8 len = strlen(ptr);
// memncpy(ptr,buf,len-1);
//
//}
#endif
/****************************************************************************************/
#define SAMPLE_UART_NAME "uart2" /* 串口设备名称 */
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT; /* 初始化配置参数 */
/* 用于接收消息的信号量 */
static struct rt_semaphore rx_sem;
static rt_device_t serial;
u16 RXD_index;
u8 RX_BUF[800];
//接收数据回调函数
static rt_err_t uart_input(rt_device_t dev, rt_size_t size)
{
/* 串口接收到数据后产生中断,调用此回调函数,然后发送接收信号量 */
if (size > 0)
{
rt_sem_release(&rx_sem);
}
return RT_EOK;
}
static void serial_thread_entry(void *parameter)
{
char ch;
while (1)
{
rt_sem_take(&rx_sem, RT_WAITING_FOREVER); // 等待信号量
// 循环读取可用数据
while (rt_device_read(serial, 0, &ch, 1) == 1)
{
// 存储接收到的数据
if (RXD_index < (sizeof(RX_BUF) - 1)) // 确保不会超出缓冲区大小
{
RX_BUF[RXD_index++] = ch;
}
else
{
GPS_Analysis(&gpsx, RX_BUF);
RX_BUF[RXD_index++] = '';
for(int i = 0;i<RXD_index;i++)
rt_kprintf("%c",RX_BUF[i]);
// rt_kprintf("%s",RX_BUF);
rt_kprintf("n-----------------------------------------------n");
rt_kprintf("GPS Analysis Result:n");
rt_kprintf("Year: %dn", gpsx.utc.date);
rt_kprintf("Month: %dn", gpsx.utc.month);
rt_kprintf("Date: %dn", gpsx.utc.date);
rt_kprintf("hour: %dn", gpsx.utc.hour);
rt_kprintf("min: %dn", gpsx.utc.min);
rt_kprintf("sec: %dn", gpsx.utc.sec);
// rt_kprintf("Longitude: %.6fn", (float)gpsx.longitude / 100000.0);
// rt_kprintf("Latitude: %.6fn", (float)gpsx.latitude / 100000.0);
printf("Longitude: %.6fn", (float)gpsx.longitude / 100000.0);
printf("Latitude: %.6fn", (float)gpsx.latitude / 100000.0);
RXD_index = 0; // 处理完后重置索引
}
}
}
}
/**
* @brief thread_serial
* @param None
* @retval ret
*/
int GPS_serial(void)
{
rt_err_t ret = RT_EOK;
char uart_name[RT_NAME_MAX];
char str[] = "hello RT-Thread!rn";
rt_strncpy(uart_name, SAMPLE_UART_NAME, RT_NAME_MAX);
/* 查找系统中的串口设备 */
serial = rt_device_find(uart_name);
if (!serial)
{
rt_kprintf("find %s failed!n", uart_name);
return RT_ERROR;
}
/* 修改串口配置参数 */
config.baud_rate = BAUD_RATE_9600; //修改波特率为 115200
config.data_bits = DATA_BITS_8; //数据位 8
config.stop_bits = STOP_BITS_1; //停止位 1
config.parity = PARITY_NONE; //无奇偶校验位
/* 控制串口设备。通过控制接口传入命令控制字,与控制参数 */
rt_device_control(serial, RT_DEVICE_CTRL_CONFIG, &config);
/* 初始化信号量 */
rt_sem_init(&rx_sem, "rx_sem", 0, RT_IPC_FLAG_FIFO);
/* 以中断接收及轮询发送模式打开串口设备 */
rt_device_open(serial, RT_DEVICE_FLAG_INT_RX);
/* 设置接收回调函数 */
rt_device_set_rx_indicate(serial, uart_input);
/* 发送字符串 */
rt_device_write(serial, 0, str, (sizeof(str) - 1));
/* 创建 serial 线程 */
rt_thread_t thread = rt_thread_create("serial", serial_thread_entry, RT_NULL, 1024, 25, 10);
/* 创建成功则启动线程 */
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
else
{
ret = RT_ERROR;
}
return ret;
}
/* 导出到 msh 命令列表中 */
//MSH_CMD_EXPORT(GPS_serial,GPS uart device sample);
// 导出函数自动运行,在系统初始化时调用usr_led_run函数
INIT_APP_EXPORT(GPS_serial);
![]()
仪表盘界面重绘:
905
仪表盘界面重绘:

